If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14=4.9x^2
We move all terms to the left:
14-(4.9x^2)=0
We get rid of parentheses
-4.9x^2+14=0
a = -4.9; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-4.9)·14
Δ = 274.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{274.4}}{2*-4.9}=\frac{0-\sqrt{274.4}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{274.4}}{2*-4.9}=\frac{0+\sqrt{274.4}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| Y=-1/2+9.8x^2+14x+60 | | x÷3-19=-24 | | 3.5-z=42 | | 3(2x+7)=2(x+5) | | -68=6(1+6b)-7(8b+2) | | 3.5•z=42 | | 3.8=5(t+7) | | -3(4b-5)-4(b+3)=-61 | | 9/x=0.4/12 | | F(2)=2x+4 | | -222=6(-5+4n) | | 12(x+3)=x(x+12)-108 | | 6=x/4+3 | | 7x10x19x=180 | | 2(h-3)=5(h-2) | | n/75=15/40 | | n/10+2=19 | | 15/n=40/75 | | 2x+9+8x-29=180 | | F(5)=-10x+2 | | 15/40=n/75 | | x–9=25 | | -x-3=6x-9-4x | | 1+x=0.4 | | (4x-13)(2x-13)(5+19)=180 | | 2x+23+12x-53=180 | | -7(x+2)=4x | | 2x+23+12-53=180 | | -544+x10+x18=0 | | 0.75n+5.7=21 | | 6x+2(x-36)=2x-36 | | 13+7m=27 |